A Linac-Ring Option for eRHIC

Ilan Ben-Zvi, Vladimir Litvinenko, Dong Wang, Yongxiang Zhao, Rama Calaga, Christoph Montag, Jörg Kewisch

Luminosity

$$L = \frac{c}{l} \frac{10^{-4} A}{Zr_p} \frac{N_i \gamma_i \xi_i}{\beta_i^*} F\left(\frac{\sigma_i}{\beta_e^*}\right)$$

$$F(\zeta) := \frac{2}{\sqrt{\pi}} \cdot \int_0^{10} \frac{\exp(-s^2)}{1 + \zeta^2 \cdot s^2} ds$$

$$\beta^*_{e} = 0.5 \text{ m}$$

$$\xi_e = \frac{N_i Z r_e}{4\pi\varepsilon_e \gamma_e}$$

$$N_e = \frac{4\pi A \xi_i \varepsilon_i \gamma_i}{Z r_p}$$

$$arepsilon_e = arepsilon_i rac{oldsymbol{eta}_i^*}{oldsymbol{eta}_e^*}$$

Linac-Ring Luminosity @ 5GeV

Parameter	Protons (A=1, Z=1, γ=266)					Gold (A=197, Z=79, γ=106)			
N _i (10 ⁹)	Pres	sent, 100	Upg	rade, 200	Pre	Present, 1		Upgrade, 2	
$\varepsilon_{\rm n}({\rm rms},\mu)$	1.4	0.7	1.4	0.7	1.4	0.7	1.4	0.7	
β^*_{i}	0.5	0.3	0.5	0.3	0.5	0.3	0.5	0.3	
L (10 ³³)	0.460	0.760	0.910	1.500	0.0046	0.0076	0.0091	0.015	
			Resulti	ng electron linac	parameters				
$N_e (10^9)$	57	29	57	29	140	71	140	71	
$I_{e}(A)$	0.26	0.13	0.26	0.13	0.64	0.32	0.64	0.32	
$\varepsilon_{\rm n}({\rm rms},\mu)$	51	15	51	15	130	39	130	39	
ξ _e	0.44	1.5	0.87	2.9	0.14	0.46	0.28	0.92	

Beam-Beam Interaction

Round electron beam from ERL with initial transverse RMS emittance of 3 nm*rad passes through the IP with the disruption parameter 3.61 (tune shift $\Delta ve = 0.6$). The figure shows Poincare plots for e-beam distribution before (red) and after (blue) the IP. After removal of r-r' correlations, the emittance growth is 11%, a value that should be easily acceptable for energy recovery in the linac.

Jörg Kewisch, May 2003

Why?

• The linac-ring will have a higher luminosity that a ring-ring collider, due to its beam-beam parameter. • The electrons are used only once, eliminating spin rotators near the IP. • A linac can operate over a wide energy range without sacrificing performance. • The polarization of a linac is high and can be rapidly alternated at will. • The linac's naturally round beam is well matched to the RHIC beam. • With strong cooling of RHIC, the electron current of the linac will be significantly smaller, reducing synchrotron radiation in the detectors. • The total electric consumption of the linac is significantly smaller, even if one assumes that its refrigeration does not take advantage of the RHIC refrigerator. • A linac can be easily upgraded for higher energies. • Just another storage ring is boring!

Layout

Jörg Kewisch, May 2003

Costs (Jan van der Laan)

- SRF \$ 134 M
- Magnets \$ 30 M
- Tunnel \$ 17 M
- Vacuum \$ 10 M
- Miscellaneous \$ 6 M
- Gun \$ 3 M
- Sum \$ 210 M
 - Power \$ 45 M
 - Sum \$ 145 M

Superconducting cavities for high average current linacs

- The RHIC electron cooler requires an SRF linac cavity designed for β=1, high average current (≥100 mA).
- The electron cooling group is in the process of designing such cavity.
- This cavity can also be used for a linac-ring option of eRHIC

5 cell 703.75 MHz Design

Beam breakup

Courtesy: Geoffrey Krafft

Energy Recovery Linac — beam breakup threshold by TDBBU

Electromagnetic modes calculations and beam break-up

1 ampere!

0.1 second

Dong Wang – see TPAB046

Approximate loss factors

Approximate loss-factor:
$$k_l = \frac{\Gamma(.25)Z_0c}{4\pi^{2.5}a}\sqrt{\frac{d}{\sigma}}\sqrt{N_c}$$

Given $6x10^{10}$ electrons per bunch, $\sigma=1.4$ mm / 2.7 mm, bunch repetition frequency 28.2 MHz and ERL mode. ABCI calculation of loss factor by Dong Wang.

Cavity (single)	TESLA 1.3 GHz	New 0.7 GHz
$K_1(V/pC)$	7.8	1.2
Power (kW)	39.6	6.6
Energy spread	30x10 ⁻⁴	5x10 ⁻⁴

To do

- Lattice
- Polarized Gun with 300 mA
- Positrons (forget about it)
- Halo
- Magnetized Beam for 4 T Detector Field

Halo measurements Upstream of CEBAF Large Acceptance Spectrometer

